If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1523x^2-1518x+253=0
a = 1523; b = -1518; c = +253;
Δ = b2-4ac
Δ = -15182-4·1523·253
Δ = 763048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{763048}=\sqrt{4*190762}=\sqrt{4}*\sqrt{190762}=2\sqrt{190762}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1518)-2\sqrt{190762}}{2*1523}=\frac{1518-2\sqrt{190762}}{3046} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1518)+2\sqrt{190762}}{2*1523}=\frac{1518+2\sqrt{190762}}{3046} $
| (x+2)/2=x-8 | | 3r+9/12=5r-1/19 | | -9y=15=-(-12y-78) | | 6x-9x+5x=15-13 | | 4(2x+1)=12x-24 | | 3÷5-15÷y=3÷4 | | 10n+12=33+25n | | (5x+3)=(15-x) | | 3x-3-x=2 | | (2x-1)*3=2*(x+3) | | 0=105-3x | | 0=10-3x | | 3x=34-8 | | 3(4x-10)=30 | | 2*(x-3)=12-x | | 2x3-2x5=4 | | 0.18(x)+x=12 | | 2(3-2x)=5x-12 | | 20b+4+3b-1=7+b+20 | | 2x+x+10+(x+1)=23 | | 9(x-14)=90 | | 18+a•2=8 | | 18+a×2=8 | | 18+x×2=8 | | 2x+10=23-(x+1) | | -5x^2+100x=0 | | x+(x+2)+(x+4)=3x+6 | | 8/9=a-1/9 | | 8(a-3)=(a-5) | | 7-4c=c-2 | | 18r−3=25+6r | | 0.4x=2x+1.6 |